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1 Review

For this talk, A = k a field.

Theorem 1 (Global Verdier Duality)

Let f : X → Y be a continuous map. Then there is an additive triangulated functor f ! : D+(Y )→
D+(X), called exceptional inverse image such that we have an adjunction

HomD+(Y )(Rf!F•,G•) = HomD+(X)(F•, f !G•)

Definition 1.1. Let aX : X → pt be the usual projection to a point. Then the dualizing complex is

defined as

ωX/k = a!
X(kpt)

Definition 1.2 (Verdier Dual). Let X be a topological space and let F• ∈ Db(X) define DX(F•) ∈
Db(X)

DX(F•) = RHom

•(F•, ωX)

This will be a contravariant functor on Db(X).

Definition 1.3. Let X be a topological space. A stratification of X is a partially ordered set (Λ,≤) and

a collection of locally closed subsets {Xλ}λ∈Λ such that

1. X =
⊔
λ∈Λ

Xλ and Xλ =
⊔
µ≤λ

Xµ.

2. Each Xλ is a smooth connected complex manifold.

Definition 1.4. A sheaf F ∈ mod(kX) is constructible if there exists a stratification
⊔
λ∈Λ

Xλ such that

F|Xλ is a local system of finite rank for all λ ∈ Λ.

Definition 1.5. A complex F• ∈ Db(X,k) is constructible if all its cohomology sheaves1 HmF• are

constructible for some stratification Λ. Let

Db
c(X) := Db

c(X,k) =
{

full triangulated subcategory of Db(X) consisting of constructible complexes
}

Theorem 1.6 (6 functors formalism). Db
c(X) is closed under the six operations

Rf∗, Rf!, f
−1, f !, RHom ,⊗L

Corollary 1.7. The dualizing sheaf ωX is in Db
c(X). More generally D descends to a functor

D : Db
c(X)→ Db

c(X)

1If we were to ask that each term in F• is constructible, this would not be well defined in the derived category; a

different representative might actually have different sheaves, as we only know that the cohomology sheaves are the same.
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Section 2 Cailan Li Perverse Sheaves

Theorem 2

Let F• ∈ Db
c(X) where X is probably a complex analytic space. Then

(a) D2 ∼= id. (D is a duality.)

(b) For F• ∈ Db
c(X) we have D(F•[n]) ∼= D(F•)[−n].

(c) D◦! = ∗ ◦ D (i.e. D ◦ f! = f∗ ◦ D) and vice versa.

(d) If X is smooth, and L is a local system, then DL ∼= L∨[2 dimCX].

Proof. Almost every proof follows by some idea in key lemma of previous talk. Specifically, (a) follows

by induction where the base case reduces to Db
c(pt) = Db(k − modfg). Here, we want to show that

given a complex of k vector spaces, M•, the evaluation map

M• → RHom•(RHom•(M•,k),k)

sending m 7→ evm where evm(ϕ) = ϕ(m) where ϕ ∈ RHom•(M•,k) is an isomorphism. Now k is a

field so we don’t need to derive anything and for M a f.d. v.s, M ∼= (M∗)∗. For the general case, we

can use Noetherian induction by taking i : Z ↪→ X to be the inclusion of a closed subset to cut down

the dimension and then use the distinguished triangles.

(b) is more or less by definition of a morphism of chain complexes. (c) follows from a sheafificiation of

Global Verdier duality, aka local Verdier Duality

DY (Rf!F•) = RHom

•(Rf!F•, ωY ) = Rf∗RHom

•(F•, f !ωY ) = Rf∗RHom

•(F•, ωX)

and the RHS above is Rf∗DXF• as desired. (d) follows from a previously mentioned fact that for X

smooth, of complex dimension dimCX (and thus real dimension 2 dimCX), and L a local system,

D(L) = L∨ ⊗ Lor[2 dimCX]

as X being a complex analytic space is orientable and thus Lor = AX .

Corollary 1.8. If X is smooth, then CX [dimCX] is self dual under D.

2 Perverse Sheaves

We are finally now in a position to define a perverse sheaf. If F is a constructible sheaf under the

stratification Λ, as each Xλ is connected, the dimension of the vector space Fx is the same for any

x ∈ Xλ since Xλ is connected. Thus to a constructible sheaf we can make a table

λ Cnλ
µ Cnµ

ν Cnν

where the entry in row λ is the vector space Fx where x is any point in Xλ. Now let F• be a constructible

complex so that each cohomology sheaf HiF• is constructible, we have more columns corresponding

to different i, the cohomological degree. The corresponding vector space at the stratum λ is denoted

hi(F•λ) and this data is also collected into a table called the table of stalks as seen below.
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Section 2 Cailan Li Perverse Sheaves

. . . -1 0 1 . . .

λ h0(F•)λ
µ h1(F•)µ
ν

Example 1. The constant sheaf CX on X has the following table.

0 1

λ C 0

µ C 0

ν C 0

Definition 2.1 ((middle-perversity) perverse sheaf). Let dλ = dimCXλ. A complex of sheaves F• ∈
Db
c(X) is called a perverse sheaf if the following conditions are satisfied.

1. The table of stalks for F• has the following form

−dλ −dµ −dν
λ ∗ 0 0 0 0 0 0

µ ∗ ∗ ∗ ∗ 0 0 0

ν ∗ ∗ ∗ ∗ ∗ ∗ 0

2. The same is true for D(F•).

Aka the table of stalks for F• should be lower triangular, except the diagonal is a bit jagged.

Example 2. CX [dimCX] is a perverse sheaf. It is self dual so we only need to check one condition and

as dimCX > dimCXλ for any λ we are definitely lower triangular.

−dimCX . . .

Xλ k 0

Xµ k 0

Example 3. Consider the stratification of the flag variety for sl2, aka P1 given by the Schubert decom-

position P1 = A1 t {pt}. Let j : A1 ↪→ P1, is j!(kA1 [1]) perverse?

For a locally closed inclusion j! is always extension by zero. Because extension by zero is exact, we

don’t need to derive j! in this case and thus we see that the table of stalks for j!(kA1 [1]) is

−1 0

A1
k 0

pt 0 0

Now note that D(j!(kA1 [1])) = j∗(D(kA1 [1])) = j∗(kA1 [1]). In order to compute the table of stalks for

j∗(kA1 [1]) you need to use one of the adjunction triangles, TR2 of a triangulated category, +more stuff

to obtain the distinguished triangle

kP1 [1]→ Rj∗(kA1 [1])→ i∗kpt

where i : pt ↪→ P1. i is closed and therefore i∗ is extension by zero. Because distinguished triangles in

Db
c(P1) induce LES on hypercohomology, it follows that the table of stalks for Rj∗(kA1 [1]) will be
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−1 0

A1
k 0

pt k k

It follows that both j!(kA1 [1]) and j∗(kA1 [1]) are perverse.

Remark. The category of Perverse sheaves Perv(X) ⊂ Db
c(X) is abelian. This is why perverse sheaves

show up so often in geometric representation theory.

Theorem 2.2. Simple objects in Perv(X) are called intersection cohomology sheaves. If all the strata

are simply connected, then the IC sheaves are in bijection with the poset Λ and will be denoted ICλ for

λ ∈ Λ. Each ICλ is uniquely specified by the following two conditions.

1. ICλ is Verdier self dual, and

2. The table of stalks for ICλ is of the form

−dλ −dµ −dν
6< λ 0 0 0 0 0 0 0 0

λ 0 k 0 0 0 0 0 0

µ 0 ∗ ∗ ∗ 0 0 0 0

ν 0 ∗ ∗ ∗ ∗ ∗ 0 0

I.E. the only nonzero term appearing on the diagonal is on the λ spot.

Example 4. In our example above, what are the IC of P1 = A t {pt}? We claim ICA1 = kP1 [1] and

ICpt = i∗(kpt). The table of stalks for kP1 is

−1 0

C× k 0

pt k 0

Moreover it is self dual as dimC P1 = 1. Therefore it satisfies the condition to be ICA1 . As i is a closed

inclusion i∗ = i! is extension by zero and therefore the table of stalks of i∗(kpt) is

−1 0

C× 0 0

pt 0 k

We now check that D(i∗(kpt)) = i!D(kpt) = i∗kpt so it is self dual and thus satisfies the condition to be

ICpt.

Remark. For type A, we have an alternative description of the BS variety Y (w) where w = sα1 . . . sαd
as follows. First let si = (i i+ 1). Then a point in y ∈ Y (w) is a sequence of d+ 1 complete flags (aka

Y (w) ⊂ (G/B)d+1)

y = (std,F•1 , . . . , ,F•d )

defined inductively as follows. The first is always the standard flag and V •i = V •i+1 except at the αi
spot where V 0

i = 0, V 1
i is a line, etc. For example, if G = GL2 and w = s1s1, then the conditions on

y = (std,F•1 ,F•2 ) ∈ Y (w) where

std = 0 ⊂ {e1} ⊂ C2

F•1 = 0 ⊂ V 1
1 ⊂ C2

F•2 = 0 ⊂ V 1
2 ⊂ C2
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are given by2

s1 condition : 0 ⊂ V 1
1 ⊂ C2 and V 1

1 = {e1}
s1 condition : 0 ⊂ V 1

2 ⊂ C2 and V 2
2 = V 2

1

The multiplication map mult : Y (w)→ G/B is now just

mult(std,F•1 , . . . , ,F•d ) = F•d

mult is always proper and when w is a reduced expression then one can show that the image is exactly

BwB/B. Furthermore Y (w) being an iterated P1 bundle is smooth (smoothness is a local property)

and in fact Y (w) → BwB/B is a resolution of singularities. Note that dimC Y (w) = |w|, the number

of terms in the expression w, essentially because each si gives you one more degree of freedom.

Definition 2.3. The action of w ∈ Sn on the standard flag std = 0 ⊂ {e1} ⊂ {e1, e2} ⊂ . . . ⊂ Cn in

GLn is given by

w · std = 0 ⊂
{
ew(1)

}
⊂
{
ew(1), ew(2)

}
⊂ . . . ⊂ Cn

Theorem 2.4 (Proper Base Change). Let f : X → Y be a proper map of locally compact spaces. If

F ∈ Sh(X), there is a functorial isomorphism(
Rkf∗F

)
y

∼= Hk(Xy,Fy) ∀y ∈ Y

Example 5. Consider mult : Y (s, s)→ GL2/B = P1. What is the table of stalks for mult∗(kY [2])? By

the above theorem we see it suffices to compute cohomology of the fibers over the two stratum of P1.

For the fiber over the pt aka the fiber over the standard flag std we see that the fiber over id will be the

set of all tuples

(std,F•1 , std)

where

std = 0 ⊂ {e1} ⊂ C2

F•1 = 0 ⊂ V 1
1 ⊂ C2

std = 0 ⊂ {e1} ⊂ C2

satisfying the conditions

� 0 ⊂ V 1
1 ⊂ C2

� 0 ⊂ {e1} ⊂ C2.

It’s clear that only the first condition contributes and that the set of all such lines in C2 is exactly P1C.

Thus by proper base change, it follows that

H∗mult∗(kY [2])std = H∗(P1,kP1 [2])

When we do the computation over the fiber over sstd ∈ P1, corresponding to s = (12), the only thing

that changes is that the last flag is now 0 ⊂ {e2} ⊂ C2 so we again have that the fiber is P1
C. Accounting

for the [2] shift it follows that the table of stalks for mult∗(kY [2]) is exactly

2The conditions are combinations of equalities and Gelfand-Tseltlin patterns.
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−2 0

A1 = Xs k k

pt k k

But this is exactly the table of stalks for ICA1 [1]⊕ICA1 [−1]! Wouldn’t it be great if they were isomorphic?

Definition 2.5. A complex is called a semisimple complex if it is isomorphic to a complex of the form⊕
ICλ[k]⊕mλ,k where mλ,k ∈ N

Theorem 3 (Decomposition Theorem)

If f : Y → X is a proper morphism of algebraic varieties where Y is smooth, then f∗ applied to a

semisimple complex is a semisimple complex.

With this we can now show mult∗(kY (s,s)[2]) ∼= ICA1 [1] ⊕ ICA1 [−1] using a combinatorial algorithm as

follows

Algorithm for decomposing semsimple complexes:

0. Assume you know the table of stalks for ICλ, ∀λ ∈ Λ.

1. If F• is semisimple, look at the row whose stratum λ0 is indexed by the longest element (in

general, a maximal element in poset) and suppose we have a nonzero entry, say at homological

degree −dλ0 + k where k ∈ Z. Because F• is semisimple, it’s a direct sum of ICλ possibly with

shifts. But because ICλ can only contribute to row µ if µ ≤ λ, we see that no other ICλ can

contribute to the table of stalks in row λ0 other than ICλ0 .

2. It follows from above that ICλ0 [−k] must appear as a direct summand of F•. Delete the table of

stalks of ICλ0 [−k] from F• and repeat until we only have 0’s in row λ0.

3. Repeat the procedure above with a stratum this is maximal with respect to the subposet Λ\{λ0}.
Repeat until we covered the entire table.

As Y = Y (s, s) is smooth, and therefore is stratifed trivially by say e and we have that kY [dimC Y ] =

kY [2] = ICe is a semisimple complex and thus by the decomposition theorem mult∗(kY [2]) is a semisim-

ple complex and we can apply our algorithm which easily shows the desired isomorphism. Another way

to rephrase the algorithm is that

Theorem 2.6. Semisimple complexes are determined up to isomorphism by their table of stalks.

3 Proof of the KL Conjectures

Example 6. Recall bs = δs+v and that (δs+v)(δs−v−1) = 0. Compute b2s to see that b2s = (v+v−1)bs.

Definition 3.1. Given a complex F• ∈ Db
c(G/B), define a map ch : Db

c(G/B)→ H(W ) via

ch(F•) =
∑
w∈W

(∑
i∈Z

dimh−dw−iF•xwv
i

)
δw, xw any point in Xw

The example above will then motivate
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Theorem 3.2.

ch(mult∗(kY (s1,...,sd)[d])) = bs1 . . . bsd

In fact we can say more,

Theorem 4 (a) Let F• be a semisimple complex in Db
c(G/B). Then h (D(F•)) = h(F•).

(b) Let X = G/B with the Bruhat stratification. Then h (ICw) = bw.

Proof. (a) Akin to our calculations before, one can show using the decomposition theorem that when

(s1, . . . , sd) is a reduced expression we have

mult∗(kY (s1,...,sd)[d]) ∼= ICsi...sd

⊕
µ<s1...sd

ICµ[k]mµ,k

(This is because the fiber over any point in Xsi...sd is a point because of the resolution of singularities)

Now let F• = ⊕ICλ[k]⊕mλ,k be a semisimple complex. Since ch is additive, it follows that ch(F•)
is a linear sum of elements of the form ch(mult∗(kY (s1,...,sd)[d])[k]) by repeated applications of the

isomorphism above noting we get smaller in Bruhat order with each application and thus we terminate.

It therefore suffices to prove in this case. But we have

ch
(
D(mult∗(kY (s1,...,sd))[d]))

)
= ch

(
mult∗(D(kY (s1,...,sd)[d]))

)
= ch

(
mult∗(kY (s1,...,sd)[d])

)
= bs1 . . . bsd

Likewise we see that

ch(mult∗(kY (s1,...,sd))[d])) = bs1 . . . bsd = bs1 . . . bsd

And given a complex G• satisfying (a) we have that

ch(D(G•[k])) = ch(D(G•)[−k]) = vkh(D(G•)) = vkh(G•) = v−kh(G•) = h(G•[k])

(b) Because ICw is Verdier self dual, using (a) we see that

ch (ICw) = ch (D(ICw)) = ch (ICw)

Thus {ch (ICw)} satisfies condition 1 of being a KL basis. It therefore suffices to show ch (ICw) satisfies

the degree bound. By definition of ICw the only nonzero entry in row w is at −dw and it’s of dimension

1 so we see that

ch (ICw) = δw +
∑
µ<w

(∑
i∈Z

dimh−dµ−i(ICw)xµv
i

)
δµ

But by definition, the µ row of ICλ will be zero starting at −dµ and going to the right when µ 6= λ.

This means that (∑
i∈Z

dimh−dµ−i(ICw)xµv
i

)
∈ vZ[v]

so ch (ICw) satisfies the second condition to be a KL basis. Since a KL basis is unique we are done.

A direct consequence of part (b) is that

hµ,w(v) =
∑
i∈Z

dimh−dµ−i(ICw)xµv
i (1)
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Part (b) also gives more insight into what happened last week. Specifically, after applying BB localization

and RH, we land in PervB(G/B). Clearly character formulas just depend on K0(PervB(G/B)) and the

claim is there is an isomorphism given by

χ : K0(PervB(G/B))
∼−−−−→ Z[W ]

χ([M•]) =
∑
w∈W

∑
i∈Z

(−1)ihi(M•xw)[w]

which one can see by noting that [Mw] = [(jw)!(CXw [`(w)])](aka the Verma modules) form a basis for

K0(PervB(G/B)) and note that

χ([Mw]) = (−1)`(w)[w] (2)

is sent to a basis for Z[W ]. But now applying χ to ICw we see that

χ([ICw]) =
∑
g∈W

∑
i∈Z

(−1)ihi((ICw)xg)[g]

Eq. (1)
===

∑
g∈W

(−1)dghg,w(−1)[g]

Eq. (2)
===

∑
g∈W

(−1)`(g)−`(g)hg,w(−1)χ([Mg])

=
∑
g∈W

hg,w(−1)χ([Mg])

where the second equality comes from Eq. (1) and noting

vdghg,w(v) =
∑
i∈Z

dimh−dg−i(ICw)xgv
i+dg =

∑
i∈Z

dimhi(ICw)xgv
−i

and plugging in v = −1. Because χ is an isomorphism this means back in K0(PervB(G/B) we have the

formula

[ICw] =
∑
g∈W

hg,w(−1)[Mg]

Finally, Exercise 3.28 in [EMTW], Springer Version states that

v−(`(w)−`(g))hg,w(v) ∈ Z[v−2]

Thus plugging in v = −1 is the same as plugging in v = 1 above so we see that

hg,w(−1) = (−1)`(w)−`(g)hg,w(1)

And modulo Pg,w = vsomethinghg,w this should be the final form of the KL conjectures you see on

wikipedia.

ch(Lw) =
∑
g≤w

(−1)`(w)−`(g)hg,w(1)ch(My)

Part (b) suggests that Theorem 3.2 is a decategorification of a richer structure. Namely it suggests that

we should we have an operation ? called convolution on (semisimple) perverse sheaves such that

mult∗(kY (s1,...,sd)[d]) ∼= ICs1 ? . . . ? ICsd

and then Theorem 3.2 will follow by applying h. It turns out that there are objects called B−equivariant

perverse sheaves Db
B(G/B,k) (which are slightly different than the category we have been working with,

B− constructible sheaves on G/B) and we do have a monoidal structure given by convolution ? on this

category. In other words,
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Theorem 5 (Geometric Hecke Category)

The geometric Hecke category Hgeo is defined to be the monoidal category

Hgeo := 〈ICw |w ∈W 〉?,[1],⊕ ⊂ D
b
B(G/B)

i.e. smallest subcategory containing {ICw} closed under convolution, homological shifts, and direct

summands. We then have that there is an isomorphism of algebras

K0 (Hgeo)⊕ ∼= H(W )

4 Addendum

Set B = G/B and Ps = G/Ps the partial flag variety associated to the maximal parabolic subgroup

Ps. Note that

W s = {w ∈W |`(ws) > `(w)}

is a set of representatives for W/ {e, s} and the Bruhat decomposition provides a decomposition

Ps =
⊔

w∈W s

Ps
w Ps

w = BwPs/Ps ' A`(w)
C

Let πs : B →Ps and for s1, . . . , sn ∈ S, set

E(s1, . . . , sn) = (πsn)−1(Rπsn)∗ . . . (πs1)−1(Rπs1)∗(kG/B[n]) ∈ Db
(B)(B,k)

Proposition 4.1. Let F• ∈ Db
(B)(B,k) such that Hk(F•) = 0 unless k is even and let s ∈ S. Then

Hk((πs)
−1(Rπs)∗(F•)) = 0 unless k is even and

ch((πs)
−1(Rπs)∗(F•)) = ch(F•)v−1bs (3)

Proof. For any y ∈W se have

Hk( (π−1
s (Rπs)∗(F•)yB) = Hk( (Rπs)∗(F•)yPs) = Hk( (Rπs)∗(F•))yPs = Hk(π−1

s (yPs),F•|π−1
s (yPs)

)

where we have used that taking stalks is exact and derived proper base change(c.f. Sheaves in Topology

Notes). Before proceeding, we record a lemma for use.

Lemma 4.2 (Springer). For s ∈W a simple reflection and any w ∈W , we have

(BwB)(BsB) =

{
BwsB `(ws) > `(w)

BwsB ∪BwB `(ws) < `(w)

First case: ys > y. We have that

π−1
s (yPs) = {ygB|g ∈ Ps} ' Ps/B ' P1

C ygB 7→ gB

and since ys > y, Lemma 4.2 will show that for g ∈ Ps

ygB ∈

{
BysB/B if g 6∈ B
ByB/B if g ∈ B
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Indeed, as Ps = B t BsB, in the first case above we see that g ∈ BsB. But under the isomorphism

π−1
s (yPs) ' Ps/B ' P1

C we see that

A1
C ←→ {ygB|g ∈ Ps, g 6∈ B} ⊆ BysB/B

pt←→ {ygB|g ∈ Ps, g ∈ B} ⊆ ByB/B

Decomposing P1
C = A1

C t pt, it follows that we have the LES

. . .→ Hk
c (A1

C,F•|A1)→ Hk( (π−1
s (Rπs)∗(F•)yB)→ Hk(pt,F•|pt)→ . . . (4)

from [Sheaves in Topology Notes, Section 2] as P1
C and pt are compact. From above we see that

A1
C ⊆ BysB/B and so HkF•|A1 is a local system, and likewise HkF•|pt is a local system. But A1

C,pt

are connected, simply connected and therefore HkF•|A1 ,HkF•|pt are in fact constant sheaves corre-

sponding to HkF•ysB and HkF•yB respectively.

Now, suppose we have an injective resolution of Fk for each k, then we can construct a Cartan-Eilenberg

resolution I•,• whose total complex gives us a resolution F• → Tot(I•,•). Using the spectral sequence

for double complexes and taking cohomology horizontally first, we obtain

Hp
c (A1

C,Hq(F•|A1
C
)) =⇒ Hp+q

c (A1
C,F•|A1)

Alternatively the spectral sequence above comes from the Leray spectral sequence for cohomology with

compact support with f = id. Now because Hq(F•|A1
C
) = k

m and

Hj
c (A1

C,k) =

{
k if j = 2

0 otherwise

it follows that

Hq−2(F•ysB) ∼= Hq
c (A1

C,F•|A1)

We similarly have Hk(pt,F•|pt) = Hk(F•yB) and therefore the LES in Eq. (4) becomes

. . .→ Hk−2(F•ysB)→ Hk( (π−1
s (Rπs)∗(F•)yB)→ Hk(F•yB)→ . . .

By assumption Hk(F•) = 0 unless k is even and therefore the LES breaks up into SES such that

dimkHk( (π−1
s (Rπs)∗(F•)yB) =

{
0 if k is odd

dimkH
k−2(F•ysB) + dimkH

k(F•yB) if k is even

Second case: ys < y One can repeat the arguments above to obtain

dimkHk( (π−1
s (Rπs)∗(F•)yB) =

{
0 if k is odd

dimkH
k−2(F•yB) + dimkH

k(F•ysB) if k is even

These two cases will then correspond to

Tw(v−1bs) =

{
v−1Tws + Tw if ws > w

v−2Tws + v−1Tw if ws < w

on the RHS of Eq. (3) after expanding out ch(F•)v−1bs.
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Corollary 6

For any s1, . . . , sn ∈ S and w ∈W , we have

Hi(E(s1, . . . , sn)wB) = 0 unless i ≡ n (mod 2)

Moreover we have

ch(E(s1, . . . , sn)) = bs1 . . . bsn
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